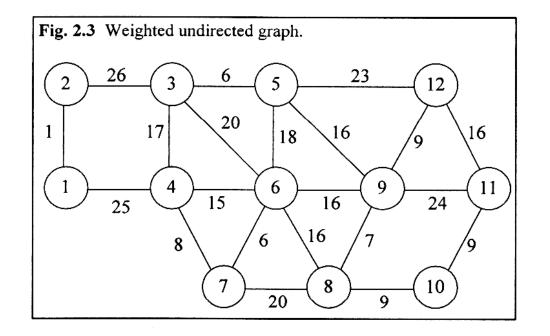
GA and Tabu Search Chae Y. Lee

Tabu Search Foundation: Short Term Memory

Memory and Tabu Classification

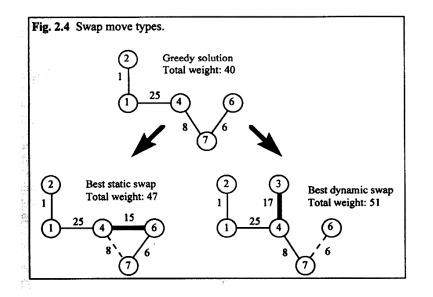
Short term and longer term memory: each type of memory is accompanied by its own special strategiesThe effect of both types of memory may be viewed as modifying the neighborhood N(x) of current solution x to modified neighborhood N*(x)

Memory and Tabu Classification


In Short term memory

N*(x) is a subset of N(x)

- Tabu classification identifies elements of N(x) excluded from N*(x), e.g.,N*(x) = N(x)\T, T: tabu list
- TS may allow a solution x to be visited more than once, but the corresponding reduced N*(x) will be different each time around
- In longer term memory
 - N*(x) is expanded to include solutions not ordinarily found in N(x)
 - TS expands N(x) according to the history of the search: Not static
 - Making choices that repeatedly visit only a limited subset of x is almost nonexistent


- The most commonly used short term memory keeps track of solutions attributes that have changed during the recent past
- Selected attributes that occur in solutions recently visited are labeled **tabu-active**
- This prevents certain recent solutions from belong to N*(x) and hence from being revisited

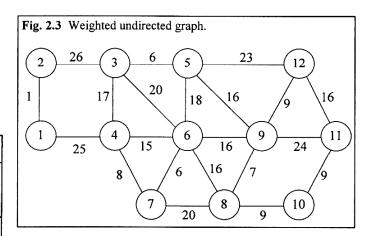
Example: *Minimum k-Tree Problem*

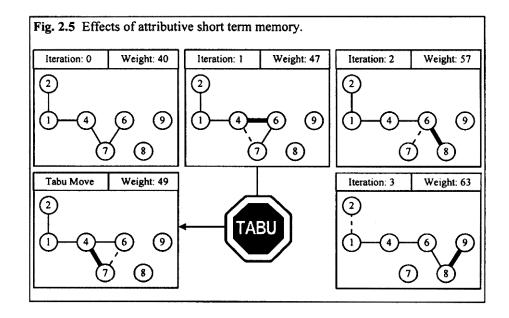
Move: edge-swapping; static swap, dynamic swap

Table 2.2 Greedy construction.						
Step	Candidates	Selection	Total Weight			
1	(1,2)	(1,2)	1			
2	(1,4), (2,3)	(1,4)	26			
3	(2,3), (3,4), (4,6), (4,7)	(4,7)	34			
4	(2,3), (3,4), (4,6), (6,7), (7,8)	(6,7)	40			

Choosing Tabu Classifications

Tabu classifications do not have to be symmetric


- Tabu structure can be designed to treat added and dropped elements differently
- In static swap of Fig 2.4,
- Classify both added and dropped edges tabu-active for the same number of iterations Symmetric tabu classification
- Implement a tabu structure that keeps a recently dropped edge tabu-active for a longer period of time than a recently added edge (There are many more edges outside the tree than in the tree) - Asymmetric tabu classification


Illustrative Tabu Classifications for the Min K-Tree Problem

Added edges are tabu-active for one iteration, dropped edges are tabu-active for two iterations

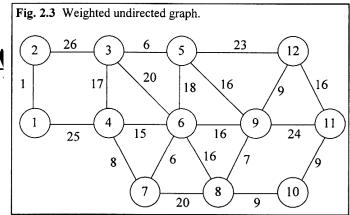
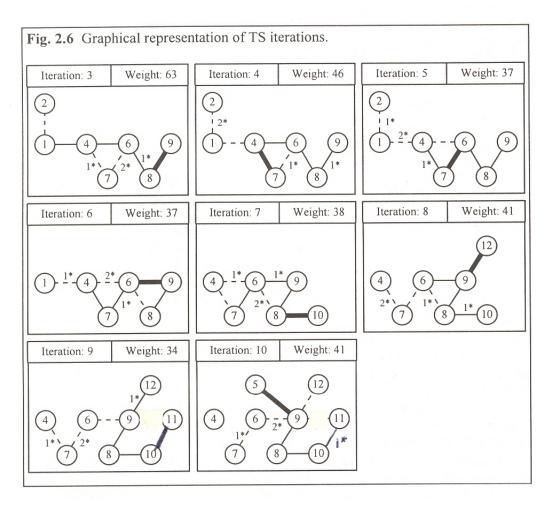
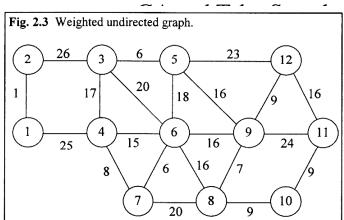
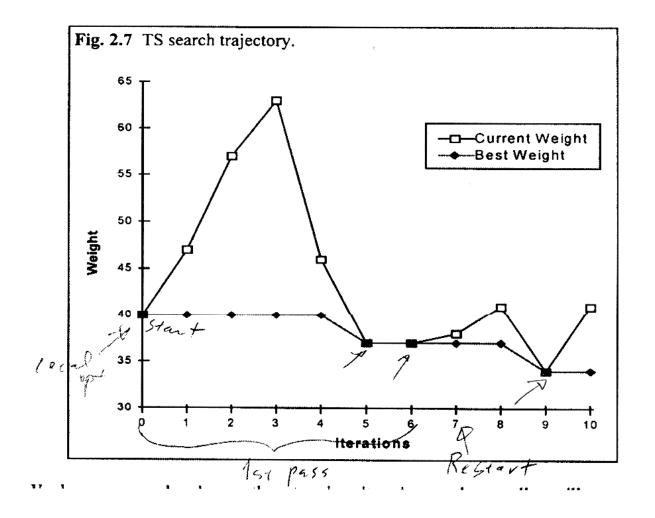

Improved-best aspiration criterion is applied

Table 2.3 TS iterations.							
Iteration	Tabu-active net tenure		Add	Drop	Weight		
	1	2					
1			(4,6)	(4,7)	47		
2	(4,6)	(4,7)	(6,8)	(6,7)	57		
3	(6,8), (4,7)	(6,7)	(8,9)	(1,2)	63		




A First Level Tabu Search A


Iteration	Tabu-active net tenure		Add	Drop	Move	Weight
	1	2	e.		Value	
3	(6,8), (4,7)	(6,7)	(8,9)	(1,2)	8	63
4	(6,7), (8,9)	(1,2)	(4,7)	(1,4)	-17	46
5	(1,2), (4,7)	(1,4)	(6,7)	(4,6)	-9	37*
6	(1,4), (6,7)	(4,6)	(6,9)	(6,8)	0	37
7	(4,6), (6,9)	(6,8)	(8,10)	(4,7)	1	38
8	(6,8), (8,10)	(4,7)	(9,12)	(6,7)	3	41
9	(4,7), (9,12)	(6,7)	(10,11)	(6,9)	-7	34*
10	(6,7), (10,11)	(6,9)	(5,9)	(9,12)	7	41

A First Level Tabu Search A

GA and Tabu Search Chae Y. Lee A First Level Tabu Search Approach

12

GA and Tabu Search Chae Y. Lee A First Level Tabu Search Approach

Critical Event Memory for Restarting Procedures

- To generate a new starting solution, a critical event that is clearly relevant is the generation of the previous starting solution
- New starting solutions has to differ not only from preceding starting solutions, but also from other solutions generated from previous passes
- In Fig. 2.7, four solutions may be qualified as critical: the starting solution and three local TS optima
- To execute a restarting procedure, one may penalize the inclusion of the edges in the critical solutions at early steps: Edges in the solution of iteration 0, 5, 6 are penalized for two steps in Table 2.5

GA and Tabu Search Chae Y. Lee A First Level Tabu Search Approach

	Table	punctified			
	Step	Candidates	Selection	Total Weight	
	1	(3,5)	(3, 5)	6	7 pendites
elgis	12/	(2,3), (3,4), (3,6), (5,6), (5,9), (5,12)	(5, 9)	22	June edges The edges Mc Cuberoph
elges connection	33	(2,3), (3,4), (3,6), (5,6), (5,12), (6,9),	(8, 9)	29) m ····
m. 3	,529	(8,9), (9,12)			(Wandty
	4	(2,3), (3,4), (3,6), (5,6), (5,12), (6,8),	(8, 10)	38	1 Maneral
3,	5,8 K	(6,9), (7,8), (8,10), (9,12)			J

Table 2.6 TS iterations following restarting.							
Iteration	Tabu-active net tenure		Add	Drop	Move	Weight	
	1	2	• î		Value		
1			(9,12)	(3,5)	3	41	
2	(9,12)	(3,5)	(10,11)	(5,9)	-7	34	
3	(3,5), (10,11)	(5,9)	(6,8)	(9,12)	7	.41	
4	(5,9), (6,8)	(9,12)	(6,7)	(10,11)	-3	38	
5	(9,12), (6,7)	(10,11)	(4,7)	(8,10)	-1	37	

A First Level Tabu Search A

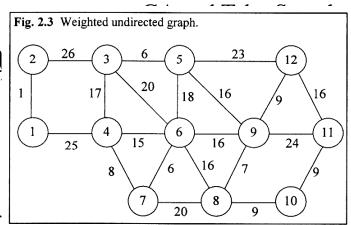
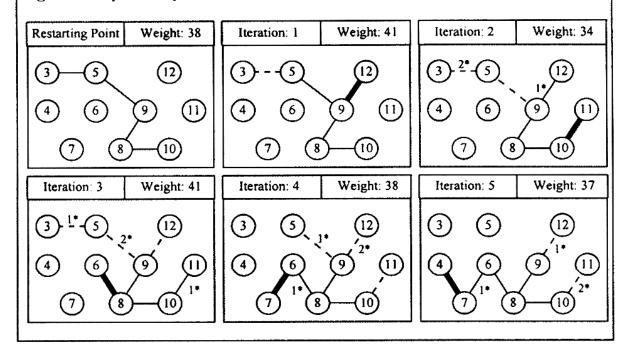



Fig. 2.8 Graphical representation of TS iterations after restarting.

GA and Tabu Search Chae Y. Lee Recency-Based Memory for Add/Drop

Useful notation

TabuStart(Added)=Iter TabuStart(Dropped)=Iter

TabuEnd(Added)=Iter+TabuDropTenure TabuEnd(Dropped)=Iter+TabuAddTenure

TestAdd is tabu-active when:Iter \leq TabuEnd(TestAdd)TestDrop is tabu-active when:Iter \leq TabuEnd(TestDrop)

Tabu Tenure

- In general, recency-based memory is managed by creating one or several tabu lists, which record the tabu-active attributes and identify their current status
- Tabu tenure can vary for different types of attributes and can also vary over different intervals of time of the search
- It is advantageous to record the iteration number that identifies when the tabu-active status of an attribute starts or ends
- Effective tabu tenures have been empirically shown to depend on the size of the problem instance

Tabu Tenure

- An appropriate tabu tenure depends on the strength of the tabu activation rule employed (more restrictive rules are generally coupled with shorter tenures)
- Varying the tabu tenure during the search provides one way to induce a balance between closely examining one region and moving to different parts of the solution space *intensification* and *diversification*

GA and Tabu Search Chae Y. Lee **Tabu Tenure: Dynamic Tabu Tenure**

Random Dynamic Tenure:

- The tabu tenure *t* is randomly selected within a range $[t_{\min}, t_{\max}]$, usually following a uniform distribution
- 1st form: The chosen tenure is maintained constant for αt_{max} iterations, and then a new tenure is selected by the same process
- 2^{nd} form: Apply a new *t* for every attribute that becomes tabu at a given iteration

Systematic Dynamic Tenure:

The tenure *t* alternately increases and decreases according to a specified sequence

GA and Tabu Search Chae Y. Lee

Aspiration Criteria and Regional Dependencies

Aspiration criteria

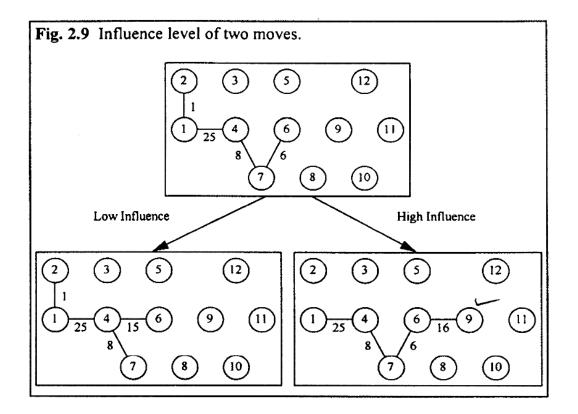
Aspiration by the improved-best

Aspiration by default

If all available moves are classified tabu, a "least tabu" (least penalty) move is selected

Aspiration by influence

Aspiration Criteria and RegionalGA and Tabu Search
Chae Y. LeeDependenciesGA and Tabu Search
Chae Y. Lee


Influence measures the degree of change induced in solution structure or feasibility

See Fig. 2.9

- High influence moves may or may not improve the current solution, though they are less likely to yield an improvement when the current solution is relatively good
- But high influence moves are important, especially during intervals of breaking away from local optimality

Aspiration Criteria and Regional Dependencies

GA and Tabu Search Chae Y. Lee

